Degenerations of ideal hyperbolic triangulations

نویسنده

  • Stephan Tillmann
چکیده

Let M be the interior of a compact, orientable 3–manifold with non-empty boundary a disjoint union of tori, and T be an ideal triangulation of M . The affine algebraic set D(M ; T ), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T , is defined and compactified by adding projective classes of transversely measured singular codimension–one foliations of (M ; T ). This leads to a combinatorial and geometric variant of well–known constructions by Culler, Morgan and Shalen concerning the character variety of a 3–manifold. AMS Classification 57M25, 57N10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal triangulations of finite volume hyperbolic 3-manifolds

Any non compact finite volume hyperbolic 3-manifold has a finite cover which admits a nondegenerate ideal triangulation. As an application, we show that the volume of those manifolds is always a critical value of a function defined from the Lobachevskii function.

متن کامل

An Inequality for Polyhedra and Ideal Triangulations of Cusped Hyperbolic 3-manifolds

It is not known whether every noncompact hyperbolic 3-manifold of finite volume admits a decomposition into ideal tetrahedra. We give a partial solution to this problem: Let M be a hyperbolic 3-manifold obtained by identifying the faces of n convex ideal polyhedra P1, . . . , Pn. If the faces of P1, . . . , Pn−1 are glued to Pn, then M can be decomposed into ideal tetrahedra by subdividing the ...

متن کامل

A Variational Principle for Weighted Delaunay Triangulations and Hyperideal Polyhedra

We use a variational principle to prove an existence and uniqueness theorem for planar weighted Delaunay triangulations (with non-intersecting site-circles) with prescribed combinatorial type and circle intersection angles. Such weighted Delaunay triangulations may be interpreted as images of hyperbolic polyhedra with one vertex on and the remaining vertices beyond the infinite boundary of hype...

متن کامل

The cusped hyperbolic census is complete

From its creation in 1989 through subsequent extensions, the widely-used “SnapPea census” now aims to represent all cusped finite-volume hyperbolic 3-manifolds that can be obtained from ≤ 8 ideal tetrahedra. Its construction, however, has relied on inexact computations and some unproven (though reasonable) assumptions, and so its completeness was never guaranteed. For the first time, we prove h...

متن کامل

Non-peripheral Ideal Decompositions of Alternating Knots

An ideal triangulation T of a hyperbolic 3-manifold M with one cusp is non-peripheral if no edge of T is homotopic to a curve in the boundary torus of M . For such a triangulation, the gluing and completeness equations can be solved to recover the hyperbolic structure of M . A planar projection of a knot gives four ideal cell decompositions of its complement (minus 2 balls), two of which are id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008